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A B S T R A C T

Visual pollution is a relatively new concern amidst the existing plethora of mainstream environmental pollution,
recommending the necessity for research to conceptualize, formalize, quantify and assess it from different di-
mensions. The purpose of this study is to create a new field of automated visual pollutant classification, har-
nessing the technological prowess of the 21st century for applications in environmental management. From the
wide range of visual pollutants, four categories have been considered viz. (i) billboards and signage, (ii) tele-
phone and communication wires, (iii) network and communication towers and (iv) street litter. The deep
learning model used in this study simulates the human learning experience in the context of image recognition
for visual pollutant classification by training and testing a convolutional neural network with several layers of
artificial neurons. Data augmentation using image processing techniques and a train-test split ratio of 80:20 have
been used. Training accuracy of 95% and validation accuracy of 85% have been achieved by the deep learning
model. The results indicate that the upper limit of accuracy i.e. the asymptote, depends on the dataset size for
this type of task. This study has several applications in environmental management. For example, the deploy-
ment of the trained model for processing of video/live footage from smartphone applications, closed-circuit
television and drones/unmanned aerial vehicles can be applied for both the removal and management of visual
pollutants in the natural and built environment. Furthermore, generating the ‘visual pollution score/index’ of
urban regions such as towns and cities will create a new ‘metric/indicator’ in the field of urban environmental
management.

1. Introduction

As the built environment of the Earth's surface expands, humans are
occupying more land than ever, and cities and towns in developed and
developing nations are getting littered with unwanted and unpleasant
visual objects; objects that have been termed as ‘visual pollutants’ (for
further details, see section 2). Visual pollution includes not just ad-
vertisements, signage, and littered wastes, but any element in the
landscape, both indoor and outdoor, that is a misfit for the place and
results in an unpleasant, offensive sight (Nagle, 2009). Although the
concern against visual pollution is recognized, due to its subjective
nature, the problem remains on how to determine a visual pollutant,
since what is a visual pollutant to one can be, as extreme as, a beautiful
sight to another. Even if an element is determined as a visual pollutant,
forces of politics and the capitalist economy work as a barrier towards a

visual pollutant-free environment.
Understanding the depth of the possible issues that can be caused by

visual pollutants, timely and efficient detection of visual pollutants
becomes very important. As of now, the time consuming and expensive
method of manual data collection is the sole option for visual pollution
research. There is an increasing need for the automation of the afore-
mentioned method of data collection and analysis. Deep learning (for
further details see section 4), being the state-of-the-art solution for
image recognition, can be used as an efficient alternative for visual
pollution data collection. As of now, there is no technical or scientific
approach to visual pollution detection and classification through deep
learning.

As such, this study, the very first of its kind, will open the window to
a new field emphasizing on the technical and scientific aspects of visual
pollution, its classifications, and its machine-based (automated)
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detection processes with applications in the broader spectrum of en-
vironmental management. Apart from environmental management, in
the future, large scale deployment of the system will aid in deriving
visual pollution statistics and metrics across the globe to be used in
public health, urban planning, legislative research etc.

2. Visual pollution

Portella (2016), in her book “Visual Pollution: Advertising, Signage
and Environmental Quality” explored the available literature on the
topic. Researchers initially defined visual pollution as the degradation
of the “visual quality” of places by advertisements and signage
(Ashihara, 1983; Nasar, 1992; Passini, 1992; Cullen, 2000). Scientific
literature exists focusing on the damaging effect of the uncontrolled
installation of commercial advertisements, mainly billboards, and sig-
nage on the landscape, especially that of the scenic and historic sites
(Ashihara, 1983; Nasar, 1992; Passini, 1992; Cullen, 2000). Later on,
the meaning of the term was expanded to include not just advertise-
ments and signage, but any element in the landscape that is a misfit for
the place and results in an unpleasant, offensive sight (Nagle, 2009).
Based on this new definition, further literature was published tackling
the topic, such as cell phone towers (Nagle, 2009) and wind turbines
(Jensen et al., 2014) as “visual pollutants”. Issues of internal and ex-
ternal architecture of buildings and other infrastructures, and their
planning were then included under visual pollution (Sumartono, 2009)
and research was conducted using time series data that relates the rise
of visual pollutants with the development of a city over time. There has
been some focus on the management of visual pollutants via software
such as GIS (Chmielewski et al., 2016, 2018). For this study, out of all
the visual pollutants, we have considered only four major ones, viz. (i)
billboards and signage, (ii) telephone and communication wires, (iii)
network and communication towers and (iv) street litter (for details, see
section 3).

The presence of designing flaws in structures, such as buildings,
transportation systems, malls, billboards etc., is a common cause for
visual pollution. According to Sumartono (2009), “many apparently
properly designed structures take into account functional requirements
but not the non-functional ones”. Flaws in the interior design of a
structure, such as the color contrast, use of other decorative elements
etc. can turn even an apparently well-designed structure into a visual
pollutant. In this regard, the use of inappropriate color combination and
design can degrade an otherwise good advertisement into a visual
pollutant. Some have even considered a disorganized and untidy home
as a visual pollutant for its residents.

As in the case of any environment degrading agent, visual pollution
results from a “lack of education and culture” (Yilmaz and Sagsöz,
2011) among the common people and especially the governing bodies
e.g. lawmakers and law implementers. Due to the lack of awareness and
recognition of the adverse psychological, physical, socio-cultural, and
economic impacts of visual pollution, the governing bodies allow the
existence and growth of such visual pollutants and the mass people,
being unaware of its adverse consequences on themselves, do not pro-
test against it. Visual pollutants can also be considered as interferences
in achieving/maintaining aestheticism (Mohammadi-Mehr et al.,
2018). In addition to this direct effect, lack of awareness also indirectly
drives the growth of visual pollutants through unnecessary excessive
consumption. According to Yilmaz and Sagsöz (2011), “visual pollution
is a result of oversized and unjustified consumption”. As direct evi-
dence, the authors mention the drastic negative change of the down-
towns of Turkey due to “tourist commerce proliferation”. Such con-
sumption behaviors are in fact encouraged by today's capitalist society.

It is a fact that man's environment is an indicator of her/his quality
of life (Voronych, 2013). Research on the effect of visual pollution on
human physiology and psychology have shown that an absence of vi-
sual pollutant can reduce the feeling of pain by increasing the secretion
of cortisone in the body. Visual pollutant free places have proved to

give people a sense of belonging, respect, and pride (Nagle, 2009;
Jensen et al., 2014). A visual pollutant-free environment was also
proven to increase the social and overall quality of life of the people in
that area significantly (Voronych, 2013; Elena et al., 2012). Some
commercial gains are also inherent – for example, most of the devel-
oped countries are increasingly becoming tourist attractions. This off-
sets the loss caused by the removal/restriction on outdoor advertise-
ments and other visual pollutants (Elena et al., 2012). Visual pollutants,
such as bright light affects insects, disturbing their movement patterns.
Once the insects' movement is restricted/hampered, the avian species
can no longer have insects as their prey, and this effect continues
throughout the food chain, ultimately affecting the humans and the
functioning of the whole ecosystem (Elena et al., 2012).

Although a globally accepted standard is yet to be made, according
to Portella (2016), there can be a general guideline for ensuring the
quality of the visual sphere based on the common views of the users
worldwide. But there also needs to be specific guidelines for each and
every place/country, since users’ views differ based on their culture/
background. At both the national and international level, special reg-
ulatory commissions should be formed who will review every new
development that will take place for potential visually polluting agents
(Elena et al., 2012), and permit only those that abide by the given
standards. Many cities have adopted the idea of complete banning of
outdoor advertisements. However, it had not been appreciated by all.
Relocating the legal structures, in compliance with the zoning laws,
have been viewed as a better option. Another possible measure can be
to declare certain places as scenic areas, similar to protected areas,
where the presence of any potential visual pollutant will be prohibited
(Nagle, 2009). Yet, the best measure will be to eradicate visual pollu-
tion from the root through creating awareness among the mass people.

3. Characterizing the classes of visual pollutants considered in
this study1

Visual pollutants vary from country to country depending on race,
religion, social and economic structure etc. However, this study is not
country specific. Rather, the visual pollutants from Bangladesh have
been considered, because Bangladesh as a developing country faces
serious urban environmental management issues, where there is a
pressing demand of a holistic visual pollutant management approach.
This approach can be applied for all developing countries in the world
by showing Bangladesh as a use case. Among the vast array of visual
pollutants discussed in the previous section, four particular visual
pollutants have been considered for this study:

3.1. Billboards and signage

Billboards and signage refer to artificial, usually planar objects
placed in the natural and built environment i.e., urban, suburban and
city centers, primarily for the purpose of advertisement (Portella,
2016). Billboards and signage were previously an issue that only wes-
tern countries were encountering. However, in the 21st century, the
emergence of developing countries and their increasing hunger for a
more 'first world' lifestyle is reflected in the form of these developing
countries facing the same issues that first world countries have once
faced. Bangladesh could not escape from the devastating negative ef-
fects of modernization in the form of excessive use of billboards and
signage, instigated by investors to facilitate the consumers' need of
being always up to date about the latest products. Certain types of
billboards appear in massive numbers during the election fever funded
by political campaigns and during festivals as a form of aggressive and

1 Figs. 1, 2, 3 and 4 (the sources of the images are provided in Supplementary
Material 1) show that images collected through web scraping are concurrent
with human perception of visual pollution.
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violent product advertisements. In Southeast Asia, local public admin-
istration has little to no control over what is built or assembled in public
spaces and do not know what is displayed and where it is displayed
(Jana and De, 2015) as seen in Fig. 1. For example, advertisements for
school coaching centers, room-mate vacancies, housing for sale etc. in
the form of billboards and signage can be found in the most un-
conventional of places such as nailed onto trees, pasted on motorized
vehicles, glued on apartment doors etc.

3.2. Telephone and communication wires

Communication, telephone, and electrical wires are integral part of
the modern world, bringing the whole planet just a dial away, implying
that anybody can connect to anyone residing anywhere. However, the
mismanagement of such entities seems to appear as creeping plants or
snakes in the ‘modern urban jungle’. These cables and wires do not
cause visual pollution until they are tangled in an unorganized or ill-
arranged way (Jana and De, 2015). First world countries do not face the
problem of visual pollution from these cables and wires since they have
moved these cables underground decades ago. Whereas the third world
countries like Bangladesh, India, Pakistan etc. are still puzzled about
what to do with this massive problem of cables and wires lurking in the
proximity of poles and sometimes over the head of the pedestrians. In a
country like Bangladesh, these cables have become a threat to pedes-
trians' life as most of them are tangled with the electrical wires, as well
as creating a huge visual impact on the eyes of visitors and pedestrians
of urban and suburban city centers as they block the natural view of the
aesthetic features related to the history of those cities (Fig. 2).

3.3. Network and communication towers

Network and communication towers, also known as cell phone
towers, refers to structural objects planted in the natural environment
(e.g. in rural areas of Bangladesh) or built environment (e.g. rooftop of
high-rise buildings in urban or suburban city centers). Cell phone
towers came to the scene of the 21st century after communication
systems across the world were (and still are) competing to become
wireless, facilitating the use of wireless handheld devices such as
smartphones. As the cell phone fever arrived in Bangladesh in the early
1990s, telecom operators, investors, and manufacturers took the

advantage and hacked the growth of their business by deploying towers
at a remarkable rate. Now, Bangladesh has cell phone towers almost
everywhere, hindering the view of a picturesque landscape, a forest,
hill, greeneries or even the vast view from the rooftop in urban areas
(Fig. 3) concurring with Nagle (2009) who has stated “view is every-
thing and a tower kills the view”.

3.4. Street litter

First world countries have accounted for street litter decades ago,
having proper plans and setup for waste disposal requiring investments
of vast sum of funds. These countries have also concentrated on reu-
sable products from solid waste, contributing to reduction of street
waste visual pollution though many old towns of first world countries
still suffer from this problem. Inhabitants of South Asian third world
countries like Bangladesh, India, and Pakistan, lack the awareness and
mindset that waste should be handled in a proper way leading to dis-
posal on urban streets and open public spaces, forming ‘garbage heaps’
(Fig. 4). But the most devastating effect is that the population has
gotten used to such an environment which can result in a character-
changing impact on the community as a whole, further paving the way
for the loss of quality of life (Jana and De, 2015).

4. Deep learning and its applications in environmental
management

In the 'Information Age', communication and transmission of energy
has become an integral and inseparable part of modern life, the tech-
nology required for which has brought along a vast plethora of physical
devices/structures such as network towers, communication and electric
wires etc. Billboards and signage (both digital and painted/printed) was
introduced in the 20th century and is currently at its peak in terms of
both scale and scope, with no sign of slowing down. Personalized ad-
vertisements in social media sites are exemplary in portraying the ex-
tent of consumerism in today's age where advertisements have invaded
almost every aspect of both public and personal life. Thus, it is apparent
that a major proportion of visual pollutants are in fact components or
implications of some form of technology.

However, technology itself can be applied in the recording, man-
agement and mitigation of visual pollution. Detection and classification

Fig. 1. Sample images of the billboards and signage class used for training and testing.
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of visual pollutants by a human is a trivial task whereas designing and
building an automated system that performs the same task is not trivial
at all. Images of the natural and built environment are analogous to the
visual areas of a person. Visual pollutants (in images) can have infinite
combination of shape, color, size etc. which may depend on angle of
perception, lighting, geographic location etc. It is impossible to hard
code such rules since computation would be very time consuming (if
possible, at all) and highly error prone. Thus, a generalized model is
necessary to perform the task and requires the involvement of machine

learning. Since the human brain is exceptionally successful at per-
forming such tasks, it is beneficiary to model the system after the
human brain itself. A mathematical model of the human brain
(McCulloch and Pitts, 1943) also known as artificial neural network
(ANN) was proposed over half a century ago where the neurons of the
human brain are modeled as artificial neurons. Several variants have
emerged depending on the specific application of ANNs. ANNs have
layer(s) of neurons where the output of one layer is fed as input to the
successive layer (analogous to the neurons in the human brain), where

Fig. 2. Sample images of telephone and communication wire class used for training and testing.

Fig. 3. Sample images of network tower class used for training and testing.
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the number of layers is correlated to the complexity of the task being
performed i.e., a harder task requires more layers of artificial neurons.
Deep neural networks (DNN) are variants of ANN, the learning system
for which is generally known as ‘deep learning’. Thus, the word ‘deep’
in deep learning refers to the fact that DNNs have several layers of
artificial neurons.

Deep learning (LeCun et al., 2015) has become the state-of-the-art
for image recognition tasks. Deep learning models have been used for
medical image analysis (Litjens et al., 2017), for identification of coral
reef species (Villon et al., 2018), for predicting poverty from satellite
images (Jean et al., 2016), for satellite image scene classification (Zou
et al., 2015), for detection of animals in footage collected from un-
manned aerial vehicles (Rey et al., 2017; Kellenberger et al., 2018) etc.
and thus hold great promise for being a solution in automating the
visually polluting image classification process. Furthermore, wide
variety of powerful and sophisticated deep learning models are present
in literature (Krizhevsky et al., 2012; He et al., 2015, 2016; Rastegari
et al., 2016; Szegedy et al., 2016).

5. Materials and methods

5.1. Collection of images

Labeled images are necessary for training a deep learning classifier
which were obtained via the Google Image Search engine. The human
perception of visually polluting entities in the physical environment
(captured in digital images) is reflected in the search results. Images
showing up in results are linked via keywords such as ‘visual pollution’.
Thus, there is a direct relationship between the images showing up in
search results and images which humans perceive as visually polluting
since the images on the web themselves were uploaded by humans who
perceived the image as visually polluting. Furthermore, inclusion of
keywords such as ‘billboard’, ‘telephone wire’ etc. along with ‘visual
pollution’, provides pre-labeled images. The term ‘Bangladesh’ is also
provided to narrow down on region specific images of visual pollutants.
However, such specificity has certain drawbacks i.e. lower number of

training and testing images (since Bangladesh is a small region com-
pared to the world) and inclusion of images of geographically similar
regions i.e. countries of South East Asia such as India, Malaysia,
Vietnam etc. High particularity in image collection achieved by pro-
viding specialized search terms such as ‘Bangladesh visual pollution
billboard’, limits the number of appropriate/useable images for each
class. This method of image data collection, though prone to some error
(e.g. ‘outlier images’; for further details see section 5.2), is extremely
fast and cost effective. The characterization, sources, and effects of the
four visual pollutant classes that have been considered in this study are
discussed previously in Section 3. Python scripting was used for col-
lecting large amounts of images from the web in batches.

5.2. Preprocessing and augmentation

Though majority of images showing up as search results contain
visual pollutants when keywords such as ‘visual pollution’ are supplied,
there are some ‘outlier images’ i.e. irrelevant images showing up in
search results which are in fact not visually polluting but show up due
to caveats in the inner workings of the search engine algorithm. Manual
intervention is necessary in identifying these ‘outlier images’ and ex-
cluding them from training and testing of the model. After removal of
irrelevant images, 200 images of each class were obtained leading to
800 total images. Deep learning models outperform traditional machine
learning models due to the availability of large amount of data. Where
the accuracy of traditional machine learning models plateaus off, ac-
curacy of deep learning models keeps increasing with amount of data.2

Thus, image augmentation was used for creating several images from
each image to increase the amount of data synthetically. Image pro-
cessing algorithms such as translation, rotation and flip are used for
generating augmented images. This also makes the models translation,
rotation and flip invariant, meaning that models will accurately identify
visual pollutants regardless of orientation of the entity within the image

Fig. 4. Sample images of street litter class used for training and testing.

2 Due to limitations of funding, manual collection of large number of images
was not possible. However, we have utilized the available image resources on
the web for the purpose of this study.
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and/or the angle of perception/position of viewer. A sample image
augmentation process is shown in Fig. 5. Since all images are of dif-
ferent sizes and the input layer of the CNN has fixed size, the input
dimensions of images need to be equalized. Consequently, images are
resized to dimension of 150 × 150 pixels.

5.3. System architecture and experimental setup

The system architecture of the CNN used in this study is shown in
Fig. 6. After the images are resized (as mentioned in previous subsec-
tion), the images are passed through convolution and max-pooling
layers 5 times, extracting higher level features from the image as it
passes through the sequential deep learning model. Lower level features
such as edges in the images are combined to form higher level features
such as shapes, in succeeding layers. For the regularization of model
weights, a dropout layer with dropout rate of 50% and L2 kernel reg-
ularizer is used in the second to last fully connected layer. Without
regularization, models tend to overfit to training data, reducing vali-
dation accuracy.

All layers within the deep learning model except for the last layer
(softmax layer) use the Rectified Linear Unit (ReLU) activation function
which is mathematically shown as

=R z z( ) max(0, )

where the output is zero if the input z is negative or else the activation
function behaves as an identity activation function in the positive do-
main.

On the other hand, the last layer uses the softmax activation func-
tion for generating the probability of the input images being members
of a certain visual pollutant class. The softmax activation function can
be shown as

=x e
e

( )j
x

i
x

j

i

where j corresponds to a specific class of visual pollutant and xj is the
value arriving at the corresponding artificial neuron for that class of
visual pollutant in the softmax layer. Summation of output of neurons
in final layer over i is the denominator and represents the sum of
probability output of all four output neurons. Since we have 4 visual
pollutant classes the output layer will have 4 neurons, and both i and j
will have values between 0 and 3 inclusive (considering that classes are
zero indexed).

The training size to testing size ratio is 80:20. Thus, 640 images
were used for training and 160 images were used for validation. The
models are trained for a total of 50 epochs (see section 5.3 for further
details) and batch size of 16 is used leading to 125 iterations in each
epoch. Due to the type of the learning problem being a multi-label
supervised classification one, the categorical cross entropy loss function
was used. The RMSprop optimizer was used for weight optimization of
model.

5.4. Software used

The Python API (Van Rossum and Drake, 1995) for Keras with
TensorFlow (Abadi et al., 2016) back end is used for model training and
testing. The ggplot2 package (Wickham, 2016) of R (R Core Team,
2013) is used for visualization of results.

6. Results and discussion

6.1. How image augmentation is related to the human learning experience?

Image augmentation involves creating new images (augmenting)
from an existing image by applying combinations of image processing
algorithm (mentioned in section 5.2) as shown in Fig. 5. The augmented
images contain the visual pollutant(s) in the original image while
changing the orientation of the pollutant(s) in the image. As a result,
during the training of the deep learning model, images are provided in
which the same visual pollutant(s) have been photographed from dif-
ferent perspectives/viewpoints, aiding the model in generalizing well

Fig. 5. Schematic of augmentation applied on training images. An image of a billboard is used as example; the original image3 containing the visual pollutant (left) is
augmented to create images with different orientations (right).

Fig. 6. System architecture of the sequential deep learning model for visual pollutant classification.

3 See Supplementary material for source of original image.
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and achieving higher accuracy. The human learning experience shows
that objects in a person's visual areas are often recognized well after it
has been observed from different viewpoints and at different orienta-
tions. The ‘methodological’ resemblance between this phenomenon and
image augmentation is quite uncanny. However, it is important to note
that image augmentation can only finitely and restrictedly mimic the
complexities of the human learning experience.

6.2. Model accuracy analysis

Passing the entire dataset forward and backward through the deep
learning model once is considered as one epoch of training. Since
feeding the entire dataset to the model every epoch is computationally
challenging, the dataset is passed through the network (both forward
pass and backward pass) in batches. The model has an overall cost
function i.e. loss function where different values of losses are obtained
based on the specific configurations of the weights of the network. Since
the data is constant and the weights are variable, optimization of
weight parameters is equivalent to model performance optimization.
Whereas the optimization of weight parameters is equivalent to finding
the permutation of weights which provides a cost/loss which is a
minima (preferably global) i.e. where the first derivative is approxi-
mately zero and the second derivative is positive, in the cost/loss sur-
face in n (n-dimensional space) where n is the total number of weights
in the deep learning model. Loss/cost and accuracy are inversely cor-
related. Accuracy is the percentage of correct classifications made by
the deep learning model on the 160 validation images.

Fig. 7 shows the categorical cross-entropy loss and accuracy for the
model during the 50 epochs of training. As training of the deep learning
model progresses i.e. with successive epochs, the weights are shifted to
more ‘optimized’ values, reducing loss and increasing the accuracy of
the model. The training loss is constantly decreasing and training ac-
curacy is constantly increasing. This is because the model is being
trained on the same 640 images over and over again and the training
accuracy refers to the number of correct classifications the model makes
on those 640 images, since the model gets highly ‘specialized’ at re-
cognizing these images, the loss/cost gets lower and accuracy gets
higher. However, the 160 validation images are images that the deep
learning model has never previously ‘seen’, thus the validation loss and
accuracy depend on how well the model can generalize to new images
rather than keep specializing on images it has been trained on. This
explains why validation loss is almost always higher than training loss
and validation accuracy is almost always lower than training accuracy.

To summarize the training and testing performance of the model,
the 50-epoch training interval is divided into 10 intervals each re-
presenting 5 epochs of training. The mean and standard deviation of
training loss, validation loss, training accuracy and validation accuracy
for those 10 intervals are shown in Table 1. When a specific epoch is

validated using specific images that the classifier finds difficult to re-
cognize correctly, the validation loss increases and the validation ac-
curacy falls. As Fig. 7 and Table 1 shows that during epoch 16–20 and
epoch 41–45 the loss increases and accuracy decreases sharply due to
this reason. However, as training progresses the loss decreases and
accuracy increases again as the weight vector maps the inputs with
minimal cost/loss. Fig. 7 shows that validation accuracy reaches the
highest value of 87% at epoch 46. However, Table 1 shows that the
mean accuracy of the interval of epoch 46–50 is 85%. This is because
there is some variability of accuracy, which is reflected in the form of
the standard deviation of the validation accuracy. With training, the
variability of the results of the model decrease i.e. standard deviation of
validation accuracy decreases with subsequent training intervals.

6.3. The relationship among deep learning, human perception and visual
pollutant classification

The analogy between deep learning and the human learning pro-
cess/experience is quite apparent. As a result, there are several simi-
larities which can be observed at all levels of representations in terms of
systems and sub-systems of components. For example, the training time
required for a model to learn to correctly classify can be quantified in
terms of epochs. Considering its counterpart, the ‘training time’ of the
human learning experience, it can be compared to the number of times
a human has to see, identify and acknowledge a visual pollutant in the
environment before that person can correctly classify a visual pollutant
i.e. until specific connections between neurons in the brain have been
established, this phenomenon itself is analogous to the weight change
concept of deep learning.

The whole concept of feature maps in convolutional neural net-
works are for extracting higher level features from an image. For

Fig. 7. Model performance metrics monitored throughout training and testing.

Table 1
Statistical summary of model performance metrics segmented intro 5-epoch
intervals.

Epoch Training loss Validation Loss Training
accuracy (%)

Validation
accuracy (%)

Mean SD Mean SD Mean SD Mean SD

1–5 1.13 0.30 1.11 0.18 56.65 12.72 53.93 9.33
6–10 0.66 0.06 0.95 0.19 76.93 2.21 67.34 5.91
11–15 0.51 0.04 0.87 0.21 83.26 1.44 72.23 6.90
16–20 0.41 0.03 1.02 0.39 86.74 1.06 72.61 8.21
21–25 0.31 0.02 0.69 0.09 90.63 0.58 81.55 3.46
26–30 0.27 0.03 1.02 0.21 92.36 0.89 74.86 3.51
31–35 0.22 0.02 0.90 0.20 94.00 0.60 82.19 3.04
36–40 0.20 0.02 1.06 0.11 94.69 0.64 80.30 1.58
41–45 0.17 0.01 1.12 0.49 95.59 0.50 79.66 6.06
46–50 0.15 0.01 0.85 0.12 96.46 0.18 85.09 1.51

N. Ahmed, et al. Journal of Environmental Management 248 (2019) 109253

7



example, classifying an image as a member of the billboard and signage
class may depend on the presence of a rectangular object in the image.
The deep learning model does so by first extracting features such as
specific edges in the image, as the image is passed through successive
convolution and max-pooling layers, the edges form larger shapes such
as rectangles, which in turn determines the output of the softmax layer.
The human learning experience also has a similar analogy since humans
tend to associate billboards with the shape of a rectangle.

On the other hand, there are several fundamental differences be-
tween deep learning and the human learning process. After all, artificial
neurons are abstractions/models of the biological neuron. In truth,
science provides ‘models’, not the exact implementations, there is an
indefinite race to define models that incorporate the finer details, for
example, classical physics and quantum physics. Though there is more
‘applicability’ of classical physics in terms of magnitude in today's
world, substantial research is dedicated to the field of quantum physics
to increase the applicability of that contemporary field. The same can
be considered for artificial neurons and artificial neural networks. As a
consequence, there is significant research on modelling of the biological
neuron (Hopfield, 1984; Mahowald and Douglas, 1991; Izhikevich,
2003; Oprisan et al., 2004; Conte et al., 2006). There are many simi-
larities between the biological neuron and the artificial neuron. For
example, the nucleus/cell body of the biological neuron is represented
as the mathematical operations that occur in the artificial neuron i.e.
summation and application of activation function. The dendrites re-
present the inputs and the axon represents the output(s).

However, it is also true that artificial neurons are abstractions of a
biological neuron which require certain assumptions to be made, in-
troducing inherent error due to modelling limitations. Currently,
computer hardware is getting specialized for deep learning i.e. the use
of graphics processing units (GPUs), which was used in this study. Even
more specialized hardware for deep learning is now present i.e. tensor
processing units (TPUs). There has been (and will be) an exponential
increase in computational power, continuing Moore's law (Schaller,
1997). Tasks such as more realistic/detailed modelling of the biological
neuron which was previously computationally unfeasible is currently
possible (Gleeson et al., 2010; Marder and Taylor, 2011). More realistic
mathematical modelling of the biological neuron will change the
structures of existing state-of-the-art neurons and neural network ar-
chitectures. Thus, both artificial neurons and artificial neural networks
need to better mimic biological neurons and neural networks while
maintaining computation cost realistic.

The concept of a ‘universal visual pollutant classifier’ is governed by
four issues viz., i) the number of different visual pollutant classes, since
having large number of classes will increase the state space of the
model, having potentially negative effect on the accuracy unless dataset
size is increased both quantitatively (more images of each class) and
qualitatively (more classes of images), ii) the presence of a hierarchical
system of categorization of visual pollutants i.e. separate classes for
election poster and billboards instead of a single generalized class, iii)
the intra-class homogeneity of the visual pollutant classes which re-
presents how similar images of the same visual pollutant category are
and iv) the inter-class heterogeneity, which represents how distinct two
images of two different visual pollutant classes are.

6.4. Scaling the mountain: the asymptote of accuracy

Due to the asymptotic and exponential nature of the accuracy
function, as seen in Fig. 7, going from 40% to 50% is easier than going
from 50% to 60%. Fig. 7 shows that the validation accuracy increased
by approximately 14% from epoch 1 to epoch 2 and 10% from epoch 2
to epoch 3. This shows that the overall validation accuracy increase
reduces with subsequent epochs. The validation accuracy increased by
less than 1% in epoch 49 to epoch 50, confirming the asymptotic and
exponential nature of validation accuracy. As a result, increasing the
baseline validation accuracy, say from, 80%–90%, would require

several magnitudes more images. It also depends on the random split-
ting of the entire dataset into training and testing samples since vali-
dation accuracy is largely affected by the images in the testing/vali-
dation data.

7. Applicability of this research in environmental management

This study introduces an interdisciplinary field of automated visual
pollution detection which sits at the intersection of visual pollution,
aestheticism, human perception, deep learning/machine learning and
environmental management with massive applicability. There are sev-
eral potential applications of the deep learning based visual pollutant
classifier developed in this study, especially in the context of environ-
mental management.

Video and live footage analysis: Video/live footage are sequences of
images being played at a constant rate i.e. with regular time intervals
between each image. Since the deep learning model developed in this
study can classify visual pollutant in images, it can also be used for the
same task on video/live footage. Each frame of the video/live footage is
extracted and fed to the trained model as input which recognizes the
visual pollutants in the frame/image and records the result in a data-
base. Footage from surveillance cameras installed in urban areas can be
processed using the model to detect and classify visual pollutants.

Cloud-based server deployment: The model deployed on a server
would make it accessible to anyone with an internet connection, even
from remote regions across the globe. Furthermore, deployment on the
cloud would mean that several instances of the model could be run
simultaneously by different parties.

Smartphone application development: The model can be used for the
development of camera-based smartphone applications which could be
used for both image collection in the future as well as for detection
purposes. There are approximately 2.71 billion smartphone users across
the globe in 2019 which will rise to 2.87 billion in 2020 (eMarketer,
n.d.). Thus, the potential user base for a deep learning based visual
pollutant classifier on a smartphone application is massive.

Equipment on drones and unmanned aerial vehicles (UAVs): Aerial
devices equipped with a visual pollutant classifier can be used for ob-
taining images of visual pollutants as well as the geographic co-
ordinates through GPS.

Visual pollutant removal and management: Once the location of the
visual pollutants have been obtained through smartphone applications
and drones/UAVs, manual intervention can be applied more effectively
for both the removal and management of visual pollutants in the nat-
ural and built environment. For example, the model could be used for
locating street litter which needs removing, aiding in solid waste
management.

Visual pollution index generation: The information retrieved from
smartphone and drones/UAVs equipped with the model can be used for
generating a visual pollution index for geographic regions such as a
city, town or country. This would be a very important tool for urban
planners and professionals in the field of urban environmental man-
agement. The visual pollution index could be used for both evaluation
of the visual aestheticism of a geographic region as well as comparison
between the visual aestheticism of different geographic regions.
Geolocations of automatically identified visual pollutants can be used to
calculate the ‘visual pollutant density’ which is a direct contributor to
the visual pollutant index.

Methodological replicability: The methodology developed in this
study can be used for training deep learning models (and other machine
learning models) specialized for specific visual pollutants of a different
part of the world as well as for larger datasets with more visual pol-
lutant classes.

Transfer learning: As the results indicate, the model achieves ap-
proximately 85% validation accuracy. This relatively high validation
accuracy (even though being severely restricted by dataset of only 800
images) hint towards the huge potential of this model to be used for
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transfer learning. Thus, the pre-trained model can directly be used for
classifying new images containing visual pollutants.

Industrial scale products: This study instigates the development of
both hardware and software products specialized for visual pollutant
classification. For example, development of specialized GPU archi-
tectures for model training and execution of visual pollutant classifiers
can massively reduce training and detection time needed for the sys-
tems. Software products can be developed for image and video analysis.
With significant awareness about visual pollution and aestheticism
across the globe, these products will become an integral part of en-
vironmental management.

8. Conclusion

The results of this study show that even an abstract simulation of a
component of the human brain i.e. through deep learning, is capable of
achieving validation accuracy of 85% and training accuracy of 95% for
the highly complex task of visual pollutant classification. Thus, more
realistic simulations through deep learning models specialized for vi-
sual pollutant classification will increase both the validation accuracy
achieved as well as the overall applicability of the study. Simulations of
the human learning experience such as image augmentation plays an
important role in deep learning, especially if the data set size is con-
strained. The automated data collection method has several drawbacks.
There is a limit to the number of appropriate images that can be ob-
tained for a specific visual pollutant. Whereas, manual collection of
images can be used to created datasets of millions of images.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jenvman.2019.07.024.
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